Поделиться в Facebook Поделиться ВКонтакте Поделиться в LinkedIn Опубликовать в Twitter

Менеджер сети

Эта глава охватывает следующие темы:

Введение

Менеджер сети (Net) дает пользователям QNX прозрачное расширение мощных возможностей механизма передачи сообщений. Взаимодействуя непосредственно с Микроядром, Менеджер сети усиливает механизм IPC на основе обмена сообщениями, передавая сообщения на удаленные компьютеры. Кроме того, Менеджер сети обеспечивает:

  • повышенную пропускную способность за счет балансировки нагрузки;
  • отказоустойчивость за счет резервирования соединений;
  • функции моста между QNX сетями.

Обязанности Менеджера сети

Менеджер сети отвечает за распространение примитивов передачи сообщений QNX в пределах локальной сети. Стандартные примитивы передачи сообщений используются без изменения для связи с удаленным компьютером. Другими словами, не существует особых "сетевых" Send(), Receive() или Reply().

Независимый модуль

Менеджер сети не должен быть обязательно встроен в образ операционной системы. Он может быть запущен и остановлен в любое время, чтобы обеспечить или удалить сетевые возможности передачи сообщений.

При запуске Менеджер сети регистрируется у Менеджера процессов и Ядра. Это активизирует код внутри последних, который взаимодействует с Менеджером сети. Это означает, что передача сообщений по сети и создание удаленных процессов - это не просто добавляемый поверх операционной системы слой. Сетевые возможности интегрированы в самую сердцевину примитивов передачи сообщений и управления процессами.

Такая глубокая интеграция на самом нижнем уровне обеспечивает QNX сетевую прозрачность и делает ее полностью распределенной операционной системой. Поскольку приложения запрашивают и получают доступ ко всем обслуживающим программам посредством сообщений и Менеджер сети обеспечивает прозрачное прохождение сообщений по сети, то узлы QNX функционируют вместе как единый логический компьютер.

Поскольку Менеджер сети и Микроядро отделены друг от друга, Микроядро может достичь независимости от сетевого оборудования, а компьютеры, не подключенные к сети, могут выиграть за счет меньшего объема кода.

Интерфейс Микроядро/Менеджер сети

Микроядро и Менеджер процессов взаимодействуют с Менеджером сети через специальную неблокирующую очередь в памяти. Эта очередь представляет собой список передач, которые должен выполнить Менеджер сети. Элементы очереди содержат всю информацию о конкретной операции (например, Send(), Reply(), создание виртуального канала (VC), передача удаленного сигнала и т.д.).

Другим ресурсом операционной системы, используемым для обеспечения прозрачной передачи сообщений, является буфер виртуального канала. Выделяемый при создании VC процессом, буфер виртуального канала хранит данные до завершения операции передачи сообщения на другой узел.

Ниже приведены диаграммы, иллюстрирующие процесс посылки и приема удаленных сообщений.

Посылка сообщения на удаленный узел


Процесс вызывает Send() или Reply() к удаленному узлу

Процесс вызывает Send() или Reply() к удаленному узлу

В случае вызова Send() или Reply() к удаленному узлу, имеют место следующие события:

  1. Процесс вызывает Send() или Reply(), и Микроядро копирует данные из области данных процесса в буфер виртуального канала.
  2. Микроядро добавляет в очередь Менеджера сети элемент, содержащий идентификаторы отправителя, удаленного получателя и указатель на данные в буфере виртуального канала. Если перед этим очередь была пуста, то Менеджер сети получает прокси, извещающее о том, что появилась новая работа.
  3. Менеджер сети извлекает элемент из очереди.
  4. Менеджер сети посылает элемент соответствующему сетевому драйверу.
  5. Менеджер сети начинает передачу данных по сети и отвечает за доставку.

В случае распространения сигнала или создания VC, Менеджер процессов, а не Микроядро, добавляет управляющий пакет в очередь . Как и в предыдущем случае, Менеджер сети передаст пакет по назначению.

Получение сообщения с удаленного узла


Процесс получает удаленный Send() или Reply()

Процесс получает удаленный Send() или Reply()

Допустим, что удаленный узел послал сообщение, как описано выше. В этом случае на принимающем узле имеют место следующие события:

  1. Сетевой драйвер помещает поступившие по сети данные в соответствующий буфер виртуального канала.
  2. Сетевой драйвер информирует Менеджер сети о том, что прием завершен.
  3. Менеджер сети использует частный вызов Ядра, извещая его о том, что прием завершен.
  4. Микроядро копирует данные из буфера виртуального канала в буфер процесса (при условии, что он RECEIVE- или REPLY-блокирован на этом виртуальном канале).

Любые управляющие пакеты, которые получает Менеджер сети, немедленно переправляются Менеджеру процессов через стандартный примитив Send(). Эти управляющие пакеты используются для распространения сигналов и создания виртуальных каналов.

Сетевые драйверы

Подобно Менеджеру файловой системы и Менеджеру устройств, Менеджер сети не содержит аппаратно-зависимого кода. Эта функциональность обеспечивается драйверами сетевых плат. Менеджер сети может поддерживать одновременно несколько сетевых драйверов. Каждый драйвер обычно обслуживает одну сетевую плату. Вы можете иметь драйверы/платы одного и того же типа или различных типов - например, два драйвера/платы Ethernet или, допустим, драйвер/плату Ethernet и драйвер/плату Arcnet.

Интерфейс между Менеджером сети и драйверами реализован через очереди в разделяемой памяти. Этот интерфейс разработан таким образом, чтобы достичь максимально возможной производительности. Драйвер определяет протокол, подходящий для данного сетевого носителя.

Драйвер отвечает за формирование пакетов, организацию последовательности и в случае, когда требуется гарантированная доставка данных удаленному узлу, повторную передачу. Такая архитектура позволяет QNX легко поддерживать новое сетевое оборудование и протоколы за счет написания или модификации только сетевого драйвера.

Идентификаторы узла и сети

Каждый узел в локальной сети идентифицируется двумя числами:

  • физическим идентификатором (ID) узла (или идентификаторами, если узел имеет более одной сетевой платы);
  • комбинацией логического ID узла и логического ID сети.

Физический ID узла

Физический ID узла определяется оборудованием. Сетевые платы обмениваются данными друг с другом, указывая физический ID удаленного узла, с которым должна быть установлена связь. В случае сети Ethernet или Token Ring - это большое число, которым неудобно оперировать людям и утилитам. Например, каждая плата Ethernet или Token Ring имеет уникальный 48-битный физический ID узла в соответствии со стандартом IEEE 802. Платы Arcnet, напротив, имеют всего лишь 8-битный ID.

Использование физического ID узла имеет существенный недостаток: при соединении некоторых сетей может возникнуть конфликт адресов (особенно в случае Arcnet), или формат адресов может радикально отличаться.

Логический ID узла

Чтобы обойти названные выше проблемы, возникающие при использовании физических ID узлов, каждому узлу QNX присваивается логический ID узла. Все процессы QNX оперируют логическими ID узлов. Физические ID узлов скрыты от процессов, выполняющихся в QNX.

Использование логических ID узлов упрощает лицензирование. Также они позволяют утилитам, которые опрашивают сеть, использовать простой цикл, в котором логический ID узла изменяется от 1 до количества узлов.

Соответствие между логическими и физическими ID узлов устанавливается Менеджером сети. Менеджер сети, когда поручает драйверу передать данные на другой узел, передает ему физический ID этого узла.

Логические ID узлов обычно присваиваются по порядку, начиная с 1. Например, узел, имеющий плату Ethernet, может получить логический ID 2, который будет соответствовать физическому ID узла 00:00:c0:46:93:30.

Логические ID узлов должны быть уникальны для всех узлов во всех соединенных QNX-сетях, чтобы сделать возможным функционирование мостов.

Логический ID сети

ID сети идентифицирует конкретную логическую сеть. Логическая сеть - это любое оборудование, которое позволяет сетевому драйверу непосредственно взаимодействовать с сетевым драйвером на другом узле. Это может быть как просто последовательный порт, так и сложная сеть Ethernet с аппаратными мостами.

На следующей диаграмме узел 7 имеет две сетевые платы, которые позволяют ему иметь доступ к узлам в логических сетях 1 и 2. Узлы 8 и 9 имеют по три платы, подключающие их к сетям 1, 2 и 3.

Заметьте, что все логические ID узлов уникальны для всех трех логических узлов.


Note: Логические ID узлов сети назначаются системным администратором. Более подробно см. в главе "Установка сети" в книге "Руководстве пользователя".


Несколько физических сетей сосуществуют посредством логических сетей

Несколько физических сетей сосуществуют посредством логических сетей

Выбор сети

В случае, когда узлы соединены более чем одной логической сетью, Менеджер сети может выбирать, какую из сетей использовать для передачи к удаленному узлу. Например, на приведенном выше рисунке узел 7 может передавать данному узлу 8, используя либо сеть 1, либо сеть 2.

Распределение нагрузки

Пропускная способность сети определяется совокупностью скорости компьютера и скорости сети. Если компьютер может выдавать данные быстрее, чем сеть может их передавать, то сеть будет ограничивать пропускную способность.

Например, два компьютера Pentium, соединенные сетью 10BASE-T Ethernet, будут ограничены 1.1 миллионом байт в секунду, то есть скоростью передачи данных, обеспечиваемой сетевым оборудованием. Однако если поместить по две платы Ethernet в каждый из компьютеров и соединить их отдельными кабелями, то Менеджер сети сможет передавать данные по обеим сетям одновременно. При большой нагрузке это обеспечит увеличение пропускной способности в два раза по сравнению с одной сетью.

Менеджер сети будет пытаться сбалансировать нагрузку, выбирая сетевой драйвер. В рассмотренном выше примере, если производится передача с узла 7 на узел 8 по сети 1 и другая передача на узел 8 инициируется на узле 7, то сеть 2 будет автоматически выбрана для передачи данных.

Отказоустойчивость

Когда узлы соединены двумя и более сетями, то существует больше чем один возможный путь для связи. В случае отказа платы в одной из сетей, когда связь по этой сети невозможна, Менеджер сети автоматически перенаправит все данные через другую сеть. Это происходит на лету без какого-либо вмешательства со стороны прикладных программ и обеспечивает прозрачную отказоустойчивость сети. Если кабели различных сетей проложены раздельно, то вы также будете защищены от случайного обрыва кабеля.

Вы также можете проектировать системы-"тандемы", в которых две машины соединены высокоскоростной сетью для нормальной работы и другой, более дешевой и медленной сетью (например, по последовательному каналу), которая служит резервом. В случае отказа первой сети соединение не оборвется, хотя пропускная способность, конечно же, снизится.

Мосты между сетями QNX

Менеджер сети позволяет любому узлу играть роль моста между двумя отдельными сетями QNX, базирующимися на стандарте IEEE 802.


Note: Так как QNX использует одинаковый формат пакетов и протокол на всех IEEE 802 сетях, можно создавать мосты между сетями Ethernet, Token Ring и FDDI.

Для сетей Arcnet нельзя создавать мосты.


Рассмотрим следующую диаграмму, где одной сети принадлежат узлы 17 и 18, а другой - узлы 18 и 19:


Мост между двумя IEEE 802 QNX сетями

Мост между двумя IEEE 802 QNX сетями

Узлы 17 и 18 находятся в одной сети, поэтому они могут общаться друг с другом напрямую. То же справедливо для узлов 18 и 19. Но как могут общаться узлы 17 и 19?

Так как обе локальные сети базируются на IEEE 802, узел 18 автоматически перенаправляет пакеты, позволяя узлам 17 и 18 создать виртуальный канал. Хотя они и не подключены к одной и той же локальной сети, узлы 17 и 19, тем не менее, могут общаться друг с другом.

Сеть TCP/IP

Присущая QNX поддержка сети реализует локальную сеть на основе собственного частного протокола и оптимизирована для организации интерфейса между QNX компьютерами. Но для связи с не-QNX системами, QNX использует ставший промышленным стандартом набор протоколов, называемый TCP/IP.

По мере того как Интернет стал занимать все большее место в нашей повсеместной жизни, протокол, на котором он основан - IP (Internet Protocol) - приобретает все большее значение. Даже если вы не подключаетесь непосредственно к Интернет как к таковому, IP протокол и связанный с ним инструментарий поистине вездесущи, делая IP стандартом "де-факто" для многих частных сетей.

IP используется везде, начиная от простых задач (например, удаленный вход в систему (login)) и до более сложных (например, отслеживание биржевых котировок в реальном времени). Все больше и больше компаний используют World Wide Web ("всемирную паутину"), основанную на IP, для переписки с клиентами, рекламы и другой деловой активности.

Менеджер TCP/IP

Менеджер TCP/IP в QNX происходит из Berkley BSD 4.3, который является наиболее распространенным стеком TCP/IP в Интернет и использован как основа для многих систем.

Сокет API

Библиотека BSD сокета API была очевидным выбором для QNX 4. Сокет API является стандартным API для программирования TCP/IP в среде Unix. В среде Windows, Winsock API базируется на BSD сокете API. Это облегчает переход между ними.

Имеются все процедуры, которые могут понадобиться прикладным программистам:

accept()
bind()
bindresvport()
connect()
dn_comp()
dn_expand()
endprotoent()
endservent()
gethostbyaddr()
gethostbyname()
getpeername()
getprotobyname()
getprotobynumber()
getprotoent()
getservbyname()
getservent()
getsockname()
getsockopt()
herror()
hstrerror()
htonl()
htons()
h_errlist()
h_errno()
h_nerr()
inet_addr()
inet_aton()
inet_lnaof()
inet_makeaddr()
inet_netof()
inet_network()
inet_ntoa()
ioctl()
listen()
ntohl()
ntohs()
recv()
recvfrom()
res_init()
res_mkquery()
res_query()
res_querydomain()
res_search()
res_send()
select()
send()
sendto()
setprotoent()
setservent()
setsockopt()
shutdown()
socket()

Распространенные утилиты и демоны из Интернет могут быть легко перенесены или просто перекомпилированы в такой среде. Это облегчает использование имеющихся готовых наработок.

Возможность взаимодействия сетей

При разработке Менеджера TCP/IP в QNX в первую очередь принималась во внимание возможность взаимодействия сетей. Учитывались как требования RFC, так и реальные условия. Менеджер TCP/IP охватывает всю функциональность, предлагаемую RFC 1122. Также поддерживаются протоколы ARP, IP, ICMP, UDP и TCP.

NFS

Network File System (NFS) является приложением TCP/IP, реализованным на большинстве DOS и Unix систем. NFS позволяет отображать удаленные файловые системы - или их части - в локальное пространстве имен. Файлы на удаленной системе показываются как часть локальной файловой системы QNX.


Note: В QNX 4 для поддержки NFS требуется менеджер Socket. Учтите, что "облегченная" версия менеджера, Socklet, может быть использована, если нет необходимости в NFS.

SMB

Server Message Block (SMB), который используется многими различными серверами, такими как Windows NT, Windows 95, Windows for Workgroups, LAN Manager и Samba. SMBfsys позволяет клиенту QNX прозрачный доступ к удаленным дискам на таких серверах.

<< Менеджер устройств| Оглавление |Оконная система Photon MicroGUI >>




Задать вопрос on-line Обсудить на форуме Написать электронное письмо